COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

ON A BOTTLENECK BIPARTITION CONJECTURE OF ERDŐS

T. D. PORTER¹

Received 28 September, 1989

For a graph G, let $\gamma(U,V) = \max\{e(U),e(V)\}$ for a bipartition (U,V) of V(G) with $U \cup V = V(G), \ U \cap V = \emptyset$. Define $\gamma(G) = \min_{\{U,V\}}\{\gamma(U,V)\}$. Paul Erdős conjectures $\gamma(G)/e(G) \leq 1/4 + O\left(1/\sqrt{e(G)}\right)$. This paper verifies the conjecture and shows $\gamma(G)/e(G) \leq 1/4\left(1+\sqrt{2/e(G)}\right)$.

This paper concerns simple graphs. The notation used is the following: For $U, V \subset V(G), U \cap V = \emptyset, \ e(U)$ denotes the number of edges in the induced graph G[U], e(G) denotes the number of edges in G, and $e[U,V] = |\{uv|uv \in E(G), u \in U, v \in V\}|$. For a bipartition (U,V) of V(G) with $U \cup V = V(G), \ U \cap V = \emptyset$, let $\gamma(U,V) = \max\{e(U),e(V)\}$ and define $\gamma(G) = \min_{\{U,V\}}\{\gamma(U,V)\}$. The function $\gamma(G)$ was introduced by R. Entringer [2]. At the Sixth International Conference at Kalamazoo in 1988, Paul Erdős presented the conjecture that $\gamma(G)/e(G) \leq 1/4 + O\left(1/\sqrt{e(G)}\right)$. He recognized that the second-moment method is not going to give this result. Also, the computation of $\gamma(G)$ in NP-hard, as was proved by L. Clark, F. Shahroki, and L. A. Székely [1]. Therefore, one may not expect an algorithmic proof of Erdős' conjecture. This paper gives a non-constructive and non-probabilistic proof.

Theorem.

$$\frac{\gamma(G)}{e(G)} \leq \frac{1}{4} \left(1 + \sqrt{\frac{2}{e(G)}} \right).$$

A series of lemmas will give the proof of the theorem.

Given G, define $\Omega = \max_{(U,V)} \{e[U,V]\}$. Since V(G) is finite, Ω is well-defined, it is known as the max cut of G. Define $S = \{(U,V) \mid e[U,V] = \Omega\}$, note $S \neq \emptyset$. For $v \in V(G)$, $H \subset V(G)$ defined $d_H(v)$ to be the number of vertices in H adjacent to v.

Lemma 1. For any $(U,V) \in S$, $e[U,V] \ge 2\gamma(U,V)$.

Proof. Let $e(U) = \max\{e(U), e(V)\} = \gamma(U, V)$. Since (U, V) defines a max cut, $d_V(x) \geq d_U(x)$, for all $x \in U$. Then, we have $e[U, V] = \sum_{x \in U} d_V(x) \geq \sum_{x \in U} d_U(x) = 2e(U) = 2\gamma(U, V)$.

AMS Subject Classification code (1991): 05 C 35

¹ This work was part of the author's Ph. D. thesis at the University of New Mexico. Research Partially supported by NSA Grant MDA904-92-H-3050.

318 T. D. PORTER

Now, define $T=\{(U,V)\mid e[U,V]\geq 2\gamma(U,V)\}$. Since $S\subset T,\ T\neq\emptyset$. Let $\alpha=\min_T\gamma(U,V)$. Throughout, let (A,B) be a fixed partition on T realizing α , that is, $\gamma(A,B)=\alpha$. Let $e(A)=\max\{e(A),e(B)\}$ and define $\Delta=e(A)-e(B)$. Note if $\Delta=0$, then

$$\frac{e(A)}{e(G)} = \frac{e(A)}{2e(A) + e[A, b]} \le \frac{e(A)}{4e(A)} = \frac{1}{4}.$$

The inequality, since $e[A,B] \ge 2\gamma(A,B) = 2e(A)$ for $(A,B) \in T$. So, assume $\Delta > 0$. Define $X \cup Y \subset A$ as follows: $X = \{x \in A \mid d_B(x) > \Delta/2\}$; $Y = \{y \in A \mid d_A(y) \ne 0 \text{ and } d_B(y) \le \Delta/2\}$. Note, $X \cap Y = \emptyset$. We then have e(A) = e(X) + e[X,Y] + e(Y).

Lemma 2. For all $y \in Y$, $d_A(y) \le d_B(y)$.

Proof. Assume there exists $y \in Y$ with $d_A(y) > d_B(y)$, then the partition (A-y,B+y) contradicts the definition of (A,B), since with $e(B)=e(A)-\Delta$, we have $\gamma(A-y,B+y)=\max\{e(A)-d_A(y),e(B)+d_B(y)\}=\max\{e(A)-d_A(y),e(A)+d_B(y)-\Delta\}< e(A)=\alpha$ since $d_A(y)\neq 0$ and $d_B(y)\leq \Delta/2$. But then, (A-y,B+y) is also in T since $e[A-y,B+y]=e[A,B]+(d_A(y)-d_B(y))>e[A,B]\geq 2e(A)>2\gamma(A-y,B+y)$. Consequently, we have $(A-y,B+y)\in T$ and $\gamma(A-y,B+y)<\alpha$, contradicting the definition of α .

Lemma 3. For all $y \in Y$, $d_B(y) > 3d_A(y)$.

Proof. Assume there exists $y \in Y$ with $d_B(y) \leq 3d_A(y)$, then the partition (A-y,B+y) contradicts the definition of (A,B). That is, $\gamma(A-y,B+y) = \max\{e(A)-d_A(y),e(B)+d_B(y)\}=\max\{e(A)-d_A(y),e(A)-\Delta+d_B(y)\}=e(A)-d_A(y)< e(A)=\alpha$, where $\max\{e(A)-d_A(y),e(A)-\Delta+d_B(y)\}=e(A)-d_A(y)$, since $d_A(y)\leq d_B(y)\leq \Delta/2$ by Lemma 2. But then, (A-y,B+y) is also in T, since if $d_B(y)\leq 3d_A(y)$, $e[A-y,B+y]=e[A,B]-(d_B(y)-d_A(y))\geq e[A,B]-2d_A(y)\geq 2\gamma(A,b)-2d_A(y)=2\gamma(A-y,B+y)$. The last inequality holds because $e[A,B]\geq 2\gamma(A,B)$ for $(A,B)\in T$. Consequently, $(A-y,B+y)\in T$ and $\gamma(A-y,B+y)<\alpha$ contradicting the definition of α .

With e(A) = e(X) + e(Y) + e[X, Y], define ξ by $\xi \sum_{y \in Y} d_A(y) = e(Y) + e[X, Y]$. Then,

 $\xi = 0$ or, $1/2 \le \xi \le 1$, where the extreme cases $\xi = 1/2$, 1 indicate e[X, Y] = 0, resp., e(Y) = 0, and $\xi = 0$ if and only if $Y = \emptyset$.

Lemma 4. If e(X) = 0, then e(A)/e(G) < 1/4.

Hence

Proof. If $Y = \emptyset$ and e(X) = 0 then e(A)/e(G) = 0, so assume $Y \neq \emptyset$; then for e(X) = 0, $e(A) = e(Y) + e[X,Y] = \xi \sum_{y \in Y} d_A(y)$. Observe that $e[A,B] = \sum_{y \in A} d_B(y) \ge e(X)$

 $\sum_{y \in X \cup Y} d_B(y) \ge \sum_{y \in Y} d_B(y) > 3 \sum_{y \in Y} d_A(y)$ follows from Lemma 3.

$$\begin{split} & \frac{e(A)}{e(G)} = \frac{e(A)}{e(A) + e[A, B] + e(B)} = \frac{\xi \sum_{y \in Y} d_A(y)}{\xi \sum_{y \in Y} d_A(y) + e[A, B] + e(B)} \\ & \leq \frac{\xi \sum_{y \in Y} d_A(y)}{\xi \sum_{y \in Y} d_A(y) + e[A, B]} < \frac{\xi \sum_{y \in Y} d_A(y)}{\xi \sum_{y \in Y} d_A(y) + 3 \sum_{y \in Y} d_A(y)} \leq \frac{1}{4} \end{split}$$

follows since $\xi \leq 1$.

For $e(X) \neq 0$, let k = |X|. Then, e(X) = ck(k-1)/2 for some $c \leq 1$. We have

$$\frac{e(A)}{e(G)} = \frac{e(A)}{2e(A) + e[A,B] - \Delta} = \frac{e(X) + \xi \sum_{y \in Y} d_A(y)}{2\left(e(X) + \xi \sum_{y \in Y} d_A(y)\right) + e[A,B] - \Delta}.$$

Case 1: $\Delta \leq \lfloor 2c(k-1) \rfloor$.

We have $e[A, B] \ge 2e(A)$, since $(A, B) \in T$. Consequently,

$$\frac{e(A)}{e(G)} \leq \frac{e(A)}{4e(A) - \Delta} = \frac{e(X) + \xi \sum_{y \in Y} d_A(y)}{4e(X) - \Delta + 4\xi \sum_{y \in Y} d_A(y)}.$$

Define $\eta \ge 0$, by $e(G) = 4e(X) - \Delta + 4\xi \sum_{y \in Y} d_A(y) + \eta$. We first show

$$\frac{e(X)}{4e(X) - \Delta} \le \frac{1}{4} \left(1 + \sqrt{\frac{2}{4e(X) - \Delta}} \right).$$

Let $\lambda = 4e(X) - 2c(k-1) = 2c(k-1)^2$, then $4e(X) - \Delta = \lambda + \varepsilon$ for some $\varepsilon \ge 0$, since $\Delta \le \lfloor 2c(k-1) \rfloor$. We have

$$\frac{e(X)}{\lambda} = \frac{ck(k-1)/2}{2c(k-1)^2} = \frac{k}{4(k-1)} \le \frac{1}{4} \left(1 + \sqrt{\frac{2}{\lambda}} \right) = \frac{1}{4} \left(1 + \sqrt{\frac{2}{2c(k-1)^2}} \right),$$

since with $c \le 1$, $\sqrt{(1/c)} \ge 1$. Consequently,

$$e(X) \leq \frac{1}{4}(\lambda + \sqrt{2\lambda}) \leq \frac{1}{4}(\lambda + \varepsilon + \sqrt{2(\lambda + \varepsilon)}) = \frac{1}{4}\left(4e(X) - \Delta + \sqrt{2(4e(X) - \Delta)}\right).$$

Hence

$$\frac{e(X)}{4e(X) - \Delta} \le \frac{1}{4} \left(1 + \sqrt{\frac{2}{4e(X) - \Delta}} \right).$$

Consequently,

$$e(A) = e(X) + \xi \sum_{y \in Y} d_A(y)$$

$$\leq \frac{1}{4} \left(4e(X) - \Delta + 4\xi \sum_{y \in Y} d_A(y) + \sqrt{2 \left(4e(X) - \Delta + 4\xi \sum_{y \in Y} d_A(y) \right)} \right)$$

$$\leq \frac{1}{4} \left(\left(4e(X) - \Delta + 4\xi \sum_{y \in Y} d_A(y) + \eta \right) + \sqrt{2 \left(4e(X) - \Delta + 4\xi \sum_{y \in Y} d_A(y) + \eta \right)} \right)$$

$$= \frac{1}{4} (e(G) + \sqrt{2e(G)}).$$

The last inequality holds since $\eta \ge 0$. Hence $e(A)/e(G) \le (1/4) \cdot \left(1 + \sqrt{2/e(G)}\right)$. Case 2: $\Delta > \lfloor 2c(k-1) \rfloor$.

We have

$$\frac{e(A)}{e(G)} = \frac{e(A)}{2e(A) + e[A, B] - \Delta} =$$

$$\frac{e(X) + \xi \sum_{y \in Y} d_A(y)}{2e(X) + e[X, B] - \Delta + 2\xi \sum_{y \in Y} d_A(y) + e[A \setminus X, B]}$$

We first show

$$\frac{e(X)}{2e(X) + e[A,B] - \Delta} \leq \frac{1}{4} \left(1 + \sqrt{\frac{2}{2e(X) + e[X,B] - \Delta}} \right),$$

which will be sufficient since

(1)
$$\xi \sum_{y \in Y} d_A(y) \le \frac{1}{4} \left(2\xi \sum_{y \in Y} d_A(y) + e[A \setminus X, B] \right).$$

The inequality (1) is trivial if $\xi = 0$, so assume $1/2 \le \xi \le 1$. Then with $Y \subset A \setminus X$ and using Lemma 3 gives $e([A \setminus X, B] \ge e[Y, B] > 3 \sum_{y \in Y} d_A(y)$. Hence,

$$\frac{\xi \sum_{y \in Y} d_A(y)}{2\xi \sum_{y \in Y} d_A(y) + e[A \setminus X, B]} \leq \frac{\xi \sum_{y \in Y} d_A(y)}{2\xi \sum_{y \in Y} d_A(y) + 3 \sum_{y \in Y} d_A(y)} \leq \frac{1}{5}.$$

The last inequality holds, since $\xi \leq 1$. This establishes (1). We have

$$\frac{e(X)}{2e(X)+e[X,B]-\Delta}<\frac{e(X)}{2e(X)+k\frac{\Delta}{2}-\Delta}=\frac{e(X)}{2e(X)+\frac{\Delta}{2}(k-2)}.$$

The inequality follows from the definition of X, i.e., $e[X,B] > |X|(\Delta/2) = (k\Delta/2)$. Let $\lambda = 2e(X) + (2c(k-1)/2)(k-2) = 2c(k-1)^2$. Then, with $\Delta \in \mathbb{N}$, we have $2e(X) + e[X,B] - \Delta = \lambda + \varepsilon$ for some $\varepsilon > 0$. We have

$$\frac{e(X)}{\lambda} = \frac{ck(k-1)/2}{2c(k-1)^2} = \frac{k}{4(k-1)} \le \frac{1}{4} \left(1 + \sqrt{\frac{2}{\lambda}} \right).$$

The last inequality was shown in Case 1. Consequently,

$$\begin{split} e(X) &\leq \frac{1}{4}(\lambda + \sqrt{2\lambda}) < \frac{1}{4}\left(\frac{\lambda + \varepsilon}{4} + \sqrt{2(\lambda + \varepsilon)}\right) \\ &= \frac{1}{4}\left(2e(X) + e[X, B] - \Delta + \sqrt{2(2e(X) + e[X, B] - \Delta)}\right). \end{split}$$

Hence,

$$\frac{e(X)}{2e(X)+e[X,B]-\Delta} \leq \frac{1}{4} \left(1+\sqrt{\frac{2}{2e(X)+e[X,B]-\Delta}}\right).$$

Consequently,

$$\begin{split} e(A) &= e(X) + \xi \sum_{y \in Y} d_A(y) \\ &\leq \frac{1}{4} \left[\left(2e(X) + e[X,B] - \Delta + 2\xi \sum_{y \in Y} d_A(y) + e[A \setminus X,B] \right) + \\ & \left(\sqrt{2 \left(2e(X) + e[X,B] - \Delta + 2\xi \sum_{y \in Y} d_A(y) + e[A \setminus X,B] \right)} \right) \right] \\ & = \frac{1}{4} \left(e(G) + \sqrt{2e(G)} \right). \end{split}$$

The last inequality holds from (1). Hence $e(A)/e(G) \le (1/4) \cdot \left(1 + \sqrt{2/e(G)}\right)$.

We conclude with the conjecture that the sharp bound for $\gamma(G)/e(G)$ is $(1/4) \cdot (1+1/\sqrt{2e(G)})$. The author has shown this upper bound for all r-regular graphs G. This bound is best possible, since for n odd, $\gamma(K_n)/e(K_n) \sim (1/4) \cdot (1+1/\sqrt{2e(K_n)})$.

Acknowledgement. I wish to express my gratitude to Professor Roger Entringer, who introduced me to this and many other wonderful problems, and who taught me how to do Graph Theory. I also wish to thank Professor László Székely, who kindly listened to my arguments, encouraged me, and provided many helpful suggestions.

References

- [1] L. CLARK, F. SHAHROKHI, and L. A. SZÉKELY: A Lineartime Algorithm For Graph Partition Problems, to appear in *Inform. Proc. Letters*.
- [2] R. Entringer: Personal communication.
- [3] P. ERDŐS: Personal communication.

T. D. Porter

Department of Mathematics Southern Illinois University Carbondale, Illinois 62901 U. S. A.

ga3902@siucvmb.siu.edu